Rubrene-Directed Structural Transformation of Fullerene (C60) Microsheets to Nanorod Arrays with Enhanced Photoelectrochemical Properties
Ning Chen, Pengwei Yu, Kun Guo* and Xing Lu*
Nanomaterials 2022, 12(6), 954. https://doi.org/10.3390/nano12060954
Abstract
One-dimensional (1D) nanostructures possess huge potential in electronics and optoelectronics, but the axial alignment of such 1D structures is still a challenging task. Herein, we report a simple method that enables two-dimensional (2D) C60 microsheets to evolve into highly ordered nanorod arrays using rubrene as a structure-directing agent. The structural transformation is accomplished by adding droplets of rubrene-m-xylene solution onto C60 microsheets and allowing the m-xylene solvent to evaporate naturally. In sharp contrast, when rubrene is absent from m-xylene, randomly oriented C60 nanorods are produced. Spectroscopic and microscopic characterizations collectively indicate a rather plausible transformation mechanism that the close lattice match allows the epitaxial growth of rubrene on C60 microsheets, followed by the reassembly of dissolved C60 along the aligned rubrene due to the intermolecular charge-transfer (CT) interactions, leading to the formation of ordered nanorod arrays. Due to the aligned structures and the CT interactions between rubrene and C60, the photocurrent density of the nanorod arrays is improved by 31.2% in the UV region relative to the randomly oriented counterpart. This work presents a facile and effective strategy for the construction of ordered fullerene nanorod arrays, providing new ideas for the alignment of fullerene and other relevant organic microstructures.
摘要
一维纳米结构在电子、光电领域中有巨大的应用潜力,但将其进行有序化排列仍然富有挑战。基于此,我们报道了一种简单有效的方法,使用红荧烯作为结构导向剂,可使二维的C60 微米片演变为高度有序的纳米棒阵列。通过将红荧烯的间二甲苯溶液滴加到 C60 微米片上,随间二甲苯溶剂自然蒸发,便会完成结构转变。而与之对比,当仅滴加间二甲苯溶剂时,只会形成随机分布的 C60 纳米棒。光谱和微观表征共同表明了一种合理的转变机制:红荧烯晶体和 C60 微米片晶格间距的相互匹配,促使红荧烯在 C60 微米片上外延生长;随后,由于红荧烯和 C60 分子间电荷转移相互作用,再溶解的 C60 分子会再红荧烯附近重新自组装,最终形成有序的纳米棒阵列。由于红荧烯和 C60 之间的排列结构和电荷转移相互作用,纳米棒阵列的光电流密度在紫外区域相对于随机取向的纳米棒提高了 31.2%。该工作为构建有序富勒烯纳米棒阵列提供了一种简便有效的策略,为富勒烯和其他相关有机微结构的有序化排列提供了新思路。