A Fullerene Seeded Strategy for Facile Construction of Nitrogen-Doped Carbon Nano-Onions as Robust Electrocatalysts
Kun Guo*, Zhimin He, Song Lu, Pengjun Zhang, Ning Li, Lipiao Bao, Zhixin Yu, Li Song, Xing Lu*
Advanced Functional Materials
https://doi.org/10.1002/adfm.202302100
Abstract
Carbon nano-onions (CNOs) as a novel form of carbon materials hold peculiar structural features but their electrocatalytic applications are largely discouraged by the demanding synthesis conditions (e.g., ≥1500 °C and vacuum). Using C60 fullerene molecules as the sacrificial seeds and melamine as the main feedstock, herein, a novel strategy for the facile construction of CNOs nanoparticles is presented with ultrafine sizes (≈5 nm) at relatively low temperatures (≤900 °C) and atmospheric pressure. During the calcination, in-depth characterizations reveal that C60 can retain the melamine-derived graphitic carbon nitride from complete sublimation at high temperatures (≥700 °C). Owing to the N removal and subsequent pentagon generation, severely deformed graphitic fragments together with the disintegrated C60 molecules merge into larger sized nanosheets with high curvature, eventually leading to the formation of N-doped defect-rich CNOs. Owing to the integration of multiple favorable structural features of pentagons, edges, and N dopants, the CNOs obtained at 900 °C present superior oxygen reduction half-wave potential (0.853 VRHE) and zinc–air cathode performance to the commercial Pt/C (0.838 VRHE). Density functional theory calculation further uncovers that the carbon atoms adjacent to the N-doped edged pentagons are turned into the ORR-active sites with O2 protonation as the rate-determining step.