Assembly of Copper Alkynyl Clusters into Dimensionally Diverse Coordinated Polymers Mediated by Pyridine Ligands
Zheng Liu, Jun-Jie Fang, Zhi-Yi Wang, Yun-Peng Xie*, Xing Lu*
Inorganic Chemistry
https://doi.org/10.1021/acs.inorgchem.4c00822
Abstract
Surface ligands play crucial roles in modifying the properties of metal nanoclusters and stabilizing atomically precise structures, and also serve as vital linkers for constructing cluster-based coordination polymers. In this study, we present the results of the solvothermal synthesis of eight novel copper alkynyl clusters incorporating pyridine ligands using a one-pot method. The resulting compounds underwent characterization through elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Our observations revealed that distinct pyridine ligands with varying lengths and coordination sites exert significant influence on the structure and dimensionality of the clusters. The structural diversity of these clusters led to the formation of one-dimensional (1D), two-dimensional (2D), or dimer arrangements linked by seven pyridine bridging ligands. Remarkably, these complexes exhibited unique UV–vis absorption and photoluminescence properties, which were influenced by the specific bridging ligand and structural framework. Furthermore, density functional theory (DFT) calculations demonstrated the capability of the conjugated system in the pyridine ligand to impact the band gap of clusters. This study not only unveils the inherent structural diversity in coordination polymers based on copper alkynyl clusters but also offers valuable insights into harnessing ligand engineering for structural and property modulation.